
Software Engineering

and Architecture

MiniDraw

A Framework Example

and lots of patterns

What is it?

• [Demo]

CS@AU Henrik Bærbak Christensen 2

What do I get?

• MiniDraw is a framework that helps you building apps

that have

– 2D image based graphics

• GIF/JPG files

• Optimized repainting ☺

– Direct manipulation

• Manipulate objects directly using the mouse

– Semantic constraints

• Keep objects semantically linked

CS@AU Henrik Bærbak Christensen 3

History

• MiniDraw is downsized from JHotDraw

• JHotDraw

– Thomas Eggenschwiler and Erich Gamma

– Java version of HotDraw

• HotDraw

– Kent Beck and Ward Cunningham.

– Part of a smalltalk research project that lead to the ideas we now

call design patterns and frameworks

CS@AU Henrik Bærbak Christensen 4

MiniDraw 3.0

• I did extensive rewriting of MiniDraw Spring 2022.

– HotStone required more elaborate control of

• Z-ordering

• Concurrency (supporting ‘poor-man-animation’ using threads)

– And the architecture was rewritten

• Much more compositional approach than in JHotDraw

• Interesting observation

– There were numerous tricky bugs that had never been

exposed during the last 15 years !

• Anti-Composition Axiom: System testing != Unit testing

CS@AU Henrik Bærbak Christensen 5

Our first MiniDraw application

• DrawingEditor

– “Project manager”/Redaktør

– Default implementation

• Figure

– Visible element

– ImageFigure

• Drawing

– container of figures

• Tool

– = controller

• Factory

– create impl. of MiniDraw roles

• DrawingView

– view type to use...
CS@AU Henrik Bærbak Christensen 7

Convention Over Configuration

• How does MiniDraw know about images?

– Gradle ‘resources’ folder must have ‘minidraw-images’ folder

CS@AU Henrik Bærbak Christensen 8

The Patterns in MiniDraw

Not what but why?

The 3-1-2 principles in action again...

MiniDraw’s Software Architecture

• Main JHotDraw architecture remains

– Model-View-Controller (MVC) architectural pattern

• In Minidraw:

– Model = Drawing

– View = DrawingView

– Controller = Tool

– And a central ‘sub-pattern’ in MVC is

– Observer pattern event mechanism

CS@AU Henrik Bærbak Christensen 10

MiniDraw software architecture

• All 2D GUI systems I know of, use these!

– Model-View-Controller architectural pattern

• Java Swing

• Android UI

– Observer pattern event mechanism

• Java Swing

• Android UI (and ‘managers’)

• Every window-based operating system (Windows/Mac/Ubuntu)

– Programs react to mouse events emitted by window manager

CS@AU Henrik Bærbak Christensen 11

MVC’ problem statement

• Challenge:

– writing programs with a graphical user interface

CS@AU Henrik Bærbak Christensen 12

MVC’ problem statement

• Challenge:

– writing programs with a graphical user interface

– 1) multiple open windows showing the same data – keeping them

consistent

– 2) manipulating data in many different ways by direct

manipulation (eg. move, resize, delete, create, ...)

• i.e. switching tool will switch the object manipulation

CS@AU Henrik Bærbak Christensen 13

Challenge 1

• Keeping multiple windows consistent?

• Analysis:

– Data is shared but visualization is variable!

–  Data visualization is variable behavior

–  Responsibility to visualize data is expressed in

interface: View

–  Instead of data object (model) itself is

responsible for drawing graphics it lets someone

else do the job: the views

<<interface>>

View

update()

Model

*

View A
View B

CS@AU Henrik Bærbak Christensen 14

Challenge 2

• Few mouse events (down, up, drag)
translate to open-ended number of actions
(move, resize, create, ?) on data.
– Events are the same but manipulation is

variable

–  Data manipulation is variable behavior

–  Responsibility to manipulate data is
expressed in interface: Controller

–  Instead of graphical view itself is responsible
for manipulating data it lets someone else do
the job: the controller

<<interface>>

Controller

mouseDrag()

View

Select
Move

Model

CS@AU Henrik Bærbak Christensen 15

Observer

• Challenge 1:

– Also known as observer pattern

• Intent

– Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and

updated automatically.

• We covered Observer in Week 7 ☺

CS@AU Henrik Bærbak Christensen 16

State

• Challenge 2:

– Also known as state pattern

• Intent

– Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.

– i.e. when the editor is in “draw rectangle” state, the mouse events

(click, drag, release) will create a rectangle; when in “select

object” state, the same (click, drag, release) will move an

object…

CS@AU Henrik Bærbak Christensen 17

Example: State in Powerpoint

CS@AU Henrik Bærbak Christensen 18

State!

State

• Consequences
• the manipulation that is active, determines the application state (“am

I moving or resizing figures?”)

• open ended number of manipulations (run-time binding)

• need not know all states at compile time

– change by addition...

CS@AU Henrik Bærbak Christensen 19

Architectural Pattern: MVC

• The MVC is an architectural pattern because it defines a

solution to the problem of structuring the ’large-scale’ /

architectural challenge of building graphical user

interface applications.

• But the ’engine behind the scene’ is a careful

combination of state and observer...

– That again are example of using the 3-1-2 variability handling

process.

CS@AU Henrik Bærbak Christensen 20

Static view

CS@AU Henrik Bærbak Christensen 21

Responsibilities

CS@AU Henrik Bærbak Christensen 22

Dynamics

CS@AU Henrik Bærbak Christensen 23

Discussion

CS@AU Henrik Bærbak Christensen 24

• So much pain for so little???

– To draw one lousy pixel with the mouse…

– I have to code

• A tool/controller to intercept mouse events

• Send it to the model

– That does state change

– That notifies…

• Some registered observers/view

– That receives the event

– And then finally draw stuff

• Exercise:

– Why all this pain???

Visualizing MVC

CS@AU Henrik Bærbak Christensen 25

Starcraft II

Visualizing MVC

CS@AU Henrik Bærbak Christensen 26

Three Views

Visualizing MVC

CS@AU Henrik Bærbak Christensen 27

Many
Controllers

(Side note)

• Never too old to play ☺…

• In the 80’ies, there was not

enough memory for

– The Model

– The Gfx that rendered the model

• So

– The Model was the pixels drawn!

• Noita follows this tradition ☺

CS@AU Henrik Bærbak Christensen 28

MiniDraw

Outline of its Architecture

MiniDraw: Role Diagram

CS@AU Henrik Bærbak Christensen 30

Tool: The Controller role

MiniDraw: Tool Interaction

• Basic paradigm: Direct Manipulation

• [Demo: puzzle]

CS@AU Henrik Bærbak Christensen 32

View -> Controller interaction

• Mouse events do hit the Swing JPanel, but MiniDraw

simply delegates to its active tool...

– The State pattern in

action

• Let the tool do the job

CS@AU Henrik Bærbak Christensen 33

MiniDraw vrs MVC

• MiniDraw uses a ‘middle man’: The Editor

– The view requests access to the editor’s current tool

• Aka: delegating the request to state.request()

CS@AU Henrik Bærbak Christensen 34

Tools

• MiniDraw has some simple tools defined

CS@AU Henrik Bærbak Christensen 35

Code view

• It is very simple to set a new tool:

• editor.setTool(t);

• where t is the tool you want to become active.

• Framework: You can define your own tool types!

– A framework hotspot

CS@AU Henrik Bærbak Christensen 36

This is the code
equivalent of this UI

tool box

Drawing: The Model role

MiniDraw 3.x rewrote the

code base to be purely

compositional.

Drawing

• Drawing – is responsible for quite a lot…

• How to model that in the compositional paradigm?

– By composition, of course!

CS@AU Henrik Bærbak Christensen 38

… and we partially covered that
in Week 6: Compositional Design

The Interface in MiniDraw

• So – it is defined in terms of fine-grained roles

– Role interfaces

CS@AU Henrik Bærbak Christensen 39

And the Interface is nearly Empty

• One little extra responsibility is all there is…

CS@AU Henrik Bærbak Christensen 40

MiniDraw: Drawing

• Static view

CS@AU Henrik Bærbak Christensen 41

MiniDraw: Drawing

• But how does the view get repainted?

– Double observer chain

• Figure notifies drawing, which again notifies drawing view.

CS@AU Henrik Bærbak Christensen 42

Exercise:

• Observer pattern has two roles

– Subject: Container of data

– Observer: Object to notify upon data changes

• Who are who here???

DrawingView Drawing Figure

CS@AU Henrik Bærbak Christensen 43

So the last role

• The last role that the Drawing serves…

• … is to listen to any change

events from the figures it

contains in order to be able

to fire the drawing event…

CS@AU Henrik Bærbak Christensen 44

Flexibility

• As any object, including a Figure itself, can listen to

FigureChangs…

– We can create semantic bindings

• MiniDraw can be used for to

create a UML diagram editor…

CS@AU Henrik Bærbak Christensen 45

DrawingView: The View role

View

• The View is rather simple

– JPanel to couple MiniDraw to concrete Swing GUI

implementation

– Listen to mouse events to forward them to tool/controller.

CS@AU Henrik Bærbak Christensen 47

The Compositional Advantage

• Note that this design combines two frameworks

– MiniDraw and Swing

– If DrawingView was not an interface then 

CS@AU Henrik Bærbak Christensen 48

Porting to JavaFX is on
the ToDo list!

DrawingEditor: The Coordinator

CS@AU Henrik Bærbak Christensen 49

Static View

CS@AU Henrik Bærbak Christensen 50

Implementation

Default Implementations

• Most MiniDraw roles have default implementations:

– Interface X has default implementation StandardX

– DrawingView -> StandardDrawingView

• There are also some partial implementations:

– Interface X has partial implementation AbstractX

– Tool -> AbstractTool

– Figure -> AbstractFigure

CS@AU Henrik Bærbak Christensen 52

• Complex behaviour as a result of combining simple

behaviour...

• Example:

– CompositionalDrawing implements Drawing

Compositional Design

CS@AU Henrik Bærbak Christensen 53

How do we do that?

• Proposal 1:

– implement ahead...

• Proposal 2:

– encapsulate major responsibilities in separate objects and

compose behavior

CS@AU Henrik Bærbak Christensen 54

… and we partially covered that
in Week 6: Compositional Design

Code view: delegations!

• Examples:

CS@AU Henrik Bærbak Christensen 55

What do I achieve?

• Implementing a custom Drawing

– In which the figure collection works differently…

• As in our HotStoneDrawing

– but I can reuse the collection, the selection and drawing-change

handler behavior directly!

CS@AU Henrik Bærbak Christensen 56

MiniDraw Variability Points

Variability Points

• Images

– By putting GIF images in the right folder and use them through

ImageFigures

• Tools

– Implement Tool and invoke editor.setTool(t)

• Figures

– You may make any new type you wish

• Drawing

– Own collection of figures (e.g. observe a game instance)

• Observer Figure changes

– Make semantic constraints

• Views

– Special purpose rendering
CS@AU Henrik Bærbak Christensen 58

Summary

• MiniDraw is

– A framework: A skeleton application that can be tailored for a

specific purpose

– A demonstration:

• of MVC, Observer, State, Abstract Factory, Null Object, Strategy, ...

• of compositional design: Make complex behaviour by combining

simpler behaviours

– A basis: for the mandatory project GUI.

CS@AU Henrik Bærbak Christensen 59

