/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

MiniDraw

A Framework Example
and lots of patterns

/v ‘e itD
|£:| Breakthrough Demo: (0,0) illegal — m} * W h at I S I t
|

| HotCivi Moving units ((0,0 and "stacking” are invalid } [l = =)

i s : Sl
it £

dord S

o0

@
OO0

Henrik Baerbak Christensen

/v What do | get?

AARHUS UNIVERSITET

« MiniDraw is a framework that helps you building apps
that have

— 2D image based graphics

« GIF/JPG files

» Optimized repainting ©
— Direct manipulation

« Manipulate objects directly using the mouse
— Semantic constraints

» Keep objects semantically linked

CS@AU Henrik Baerbak Christensen 3

/v History

AARHUS UNIVERSITET
* MiniDraw is downsized from JHotDraw

 JHotDraw

— Thomas Eggenschwiler and Erich Gamma
— Java version of HotDraw

* HotDraw
— Kent Beck and Ward Cunningham.

— Part of a smalltalk research project that lead to the ideas we now
call design patterns and frameworks

VeV MiniDraw 3.0

AARHUS UNIVERSITET
| did extensive rewriting of MiniDraw Spring 2022.

— HotStone required more elaborate control of

« Z-ordering

« Concurrency (supporting ‘poor-man-animation’ using threads)
— And the architecture was rewritten

* Much more compositional approach than in JHotDraw

* Interesting observation

— There were numerous tricky bugs that had never been
exposed during the last 15 years !

* Anti-Composition Axiom: System testing != Unit testing

/v

AARHUS UNIVERSITET

Our first MiniDraw application

/v public class LogoPuzzle {

public static void main(String[] args) {

AA DrawingEditor editor =
RHUS UNIVERSITET new MiniDrawApplication("Put the pieces into place®,

new PuzzleFactory() };
editor.open();

° DraW""]g Ed|tor editor.setTool(new SelectionTool(editor));
.« H) Drawing drawing = editor.drawing();
PI’OjeCt manager /Redaktgr drawing.add{ new ImageFigure("11", new Point(3, 5)));
. . drawing.add(new ImageFigure("12", new Point(1e, 18)));
- DefaUIt Implementatlon drawing.add{(new ImageFigure("13", new Point(15, 15)));
. drawing.add{(new ImageFigure("21", new Point(zo, 20)));
° Flgure drawing.add(new ImageFigure("22", new Point(25, 25)));
drawing.add(new ImageFigure("23", new Point(30, 30)));
_ V|S|b|e element /‘- draw%ng.add(new ImageF%gure("31", new Pu%ntHS, 35)));
drawing.add{ new ImageFigure("32", new Point(48, 40)));
Vg SNy)

— ImageFigure fl(_ } drawing.add(new ImageFigure("33", new Point(45, 45))
. - }
* Drawing

class PuzzleFactory implements Factory {

— container of figures
public DrawingView createDrawingView(DrawingEditor editor) {
DrawingView view =
°
-rt)()l new StdViewWithBackground({editor, "au-seal-large");
return view;

— = controller }
° Factory public Drawing createDrawing(DrawingEditor editor) {
] o return new CompositionalDrawing();
— create impl. of MiniDraw roles }
. . public JTextField createStatusField(DrawingEdito
i DraW|ngV|eW return null;
. }
— view type to use... }

CS@AU Henrik Baerbak Christensen

/~ Convention Over Configuration

AARHUS UNIVERSITET

 How does MiniDraw know about images?
— Gradle ‘resources’ folder must have ‘minidraw-images’ folder

File Edit View Bookmarks Go Tools Help
& O v O ’_'é [/home/csdev/proj/Frsproject/hotstone-Framework-start/src/main/resources/minidraw-images] [=Y]
Directory Tree Y =
< Ml hotstone-framework-start (2] i @
> ok gradle Baby.png Baked- Beef- Bocuse.png Bottura.png Brown- Bunyasarana
v W src Salmon.png Burger.png Rice.png nd.png
< M resources card- Chicken- Cinco.png Cuatro.png Dos.png Filet- frame.png
b Va7 (T (e basis.png Curry.png Mignon.png
> A hotstone-tdd-start A4 e g Q & Q %
P ol javaspattern French- Green- Lasagna.png mana.png Martinez.png Meyer.png Musli-
P kotlin-paystation = Fries.png Salad.png Bar.png
- ? Y : >
A maze ! [
. 2. . ‘
Pl minidraw-demo 2 :
> ol paystation-facade 3 Noodle- Poke- Pumpkin- Seis.png Shrimp- Siete.png Sovs.png
b i paystation-many-to-many Soup.png Bowl.png Soup.png Cocktail.png
P .\ paystation-private-interface | 9} O @ 0) Q
b A paystation-python 'v C Z
b Wl paystation-tdd-iteration-0 Spring- taunt- Tomato- Tres.png Tzatzikipng Uno.png Z.png
. . Rolls.png frame.png Salad.png

CS@AU Henrik Baerbak Christensen 8

/v

AARHUS UNIVERSITET

The Patterns in MiniDraw

Not what but why?

The 3-1-2 principles in action again...

VeV MiniDraw’s Software Architecture

AARHUS UNIVERSITET
 Main JHotDraw architecture remains

— Model-View-Controller (MVC) architectural pattern
* |In Minidraw:

— Model = Drawing
— View = DrawingView
— Controller = Tool

— And a central ‘sub-pattern’ in MVC is
— Observer pattern event mechanism

eV MiniDraw software architecture

AARHUS UNIVERSITET
« All 2D GUI systems | know of, use these!

— Model-View-Controller architectural pattern

« Java Swing
« Android Ul

— Observer pattern event mechanism
« Java Swing
« Android Ul (and ‘managers’)

« Every window-based operating system (Windows/Mac/Ubuntu)
— Programs react to mouse events emitted by window manager

/v

MVC’ problem statement

AARHUS UNIVERSITET
« Challenge:

— writing programs with a graphical user interface

CS@AU

History [edi]
One of the seminal insights in the early development of graphical user interfaces, MVC became one of the first

approaches to describe and implement software constructs in terms of their responsibilities.['7]

Trygve Reenskaug introduced MVC into Smalltalk-79 while visiting the Xerox Palo Alto Research Center (PARC)MIE jn
the 1970s. In the 1980s, Jim Althoff and others implemented a version of MVC for the Smalltalk-80 class library. Only
later did a 1988 article in The Journal of Object Technology (JOT) express MVC as a general concept.[1]

EJ Create, move, and 65 - Use the mouse |- o] x|

Tool

. '
|| Extra View [=][=][x]

Henrik Baerbak Christensen

12

/v MVC’ problem statement

AARHUS UNIVERSITET
« Challenge:

— writing programs with a graphical user interface

— 1) multiple open wmdows showing the same data — keeping them
consistent = B,

— 2) manipulating data in many different ways by direct
manipulation (eg. move, resize, delete, create, ...)

* i.e. switching tool will switch the object manipulation

/v

Challenge 1

AARHUS UNIVERSITET

« Keeping multiple windows consistent?
* Analysis:

CS@AU

Data is shared but visualization is variable!
® Data visualization is variable behavior

@® Responsibility to visualize data is expressed in
interface: View

@ Instead of data object (model) itself is
responsible for drawing graphics it lets someone
else do the job: the views

Model

*

<<interface>>
View
update()

View B

View A

Henrik Baerbak Christensen

14

/v Challenge 2

AARHUS UNIVERSITET

 Few mouse events (down, up, drag)
translate to open-ended number of actions View
(move, resize, create, ?) on data.
— Events are the same but manipulation is

variable <<interface>>
— ® Data manipulation is variable behavior Controller

— @ Responsibility to manipulate data is %SGTDFHQO_

expressed in interface: Controller

— @ Instead of graphical view itself is responsible /
for manipulating data it lets someone else do Move

the job: the controller Select

./

Model

CS@AU Henrik Baerbak Christensen 15

/v Observer

AARHUS UNIVERSITET
« Challenge 1:

— Also known as observer pattern

* [ntent

— Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and
updated automatically.

 We covered Observer in Week 7 ©

VeV State

AARHUS UNIVERSITET
« Challenge 2:

— Also known as state pattern

* [ntent

— Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.

— i.e. when the editor is in “draw rectangle” state, the mouse events
(click, drag, release) will create a rectangle; when in “select
object” state, the same (click, drag, release) will move an
object...

/v

AARHUS UNIVERSITET

CS@AU

Example: State in Powerpoint

E\N\O00O
AT LU0~
IRTAR S Ik

\

Examppe: State in Powerpoint

“ARHUS UNIVERSITET
* Clickto add text

Henrik Baerbak Christensen 18

/v

AARHUS UNIVERSITET
« Consequences

» the manipulation that is active, determines the application state (“am
| moving or resizing figures?”)

» open ended number of manipulations (run-time binding)

* need not know all states at compile time

— change by addition...

State

Context «interface»
State
request request
< o
/ N
/ , .
/ \
state.request(); lﬁ ! \

ConcreteStateA ConcreteStateB
request request

CS@AU Henrik Baerbak Christensen 19

eV Architectural Pattern: MVC

AARHUS UNIVERSITET

« The MVC is an architectural pattern because it defines a
solution to the problem of structuring the ’large-scale’ /
architectural challenge of building graphical user
interface applications.

« But the 'engine behind the scene’ is a careful
combination of state and observer...

— That again are example of using the 3-1-2 variability handling
process.

/v Static view

AARHUS UNIVERSITET
user event
receiver
«interface» «interface»
View Controller
* notify when
state changes
manipulate
visualize «interface»
1 Model

Figure 29.2: MVC role structure.

CS@AU Henrik Baerbak Christensen 21

/v Responsibilities

AARHUS UNIVERSITET

Model

e Store a pplication state.
e Maintain the set of Views associated.
e Notify all views in case of state changes.

View
e Visualize model state graphically.
e Accept user input evens, delegate them to the associated Controller.
° Potentially manage a set of controllers and allow the user to set which controller
i1s active.

Controller

° Interpret‘ user input events and translate them into state changes in the Model.

CS@AU Henrik Baerbak Christensen 22

/v

AARHUS UNIVERSITET

c: ConcreteController

v: ConcreteView

|

|

|

|
.

Dynamics

m: ConcreteModel

handleEvent()
e
N +update()
getState()
redraw()

CS@AU

|
i !
|
event() " s l
tat J]
change ae()h

notify
-

Henrik Baerbak Christensen

23

eV Discussion

AARHUS UNIVERSITET

* So much pain for so little???
— To draw one lousy pixel with the mouse...

— | have to code
» A tool/controller to intercept mouse events

« Send it to the model

- That nOtifieS. . L handleEvent() T—. i
. . |-t event() |
« Some registered observers/view L I
noti
— That receives the event A il ’
— And then finally draw stuff | 1]
« EXxercise: wa(>
— Why all this pain??? . l T

CS@AU Henrik Baerbak Christensen 24

AARHUS UNIVERSITET

/v Visualizing MVC
e - P K

Starcraft Il

Henrik Baerbak Christensen

AARHUS UNIVERSITET

/v Visualizing MVC

4"

Three Views

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

CS@AU

Visualizing

Henrik Baerbak Christensen

U

MVC

27

AARHUS UNIVERSITET
* Never too old to play ©...
 In the 8Q’ies, there was not

enough memory for .
— The Model
— The Gfx that rendered the model

e SO

— The Model was the pixels drawn!

Y o (Side note)

* Noita follows this tradition ©

CS@AU Henrik Baerbak Christensen 28

/v

AARHUS UNIVERSITET

MiniDraw

Outline of its Architecture

/v

AARHUS UNIVERSITET

Observer 1: Observer

MYWC: Wiew

«interface»
DrawingView

W

MiniDraw: Role Diagram

State: Context

«interfacex»
DrawingEditor

State: State

MW C: Controller

Y

current

«interface»
Tool

1 1

«interface»
Drawing

manipulate

MYV C: Model
Observer 1: Subject

Observer 2: Observer

«interface»
Figure

MY C: Model

Observer 2: Subject

CS@AU

Henrik Baerbak Christensen

30

/v

AARHUS UNIVERSITET

Tool: The Controller role

eV MiniDraw: Tool Interaction

AARHUS UNIVERSITET
« Basic paradigm: Direct Manipulation

 [Demo: puzzle]

Tool

e Receive mouse events (mouse down, up, drag, etc.) and key events.
e Define some kind of manipulation of the contents of the Drawing or
other changes relevant for the application.

CS@AU Henrik Baerbak Christensen

32

/v

AARHUS UNIVERSITET

View -> Controller interaction

* Mouse events do hit the Swing JPanel, but MiniDraw
simply delegates to its active tool...

— The State pattern in
action

» Let the tool do the job

sd direct manipulatiory

:JPanel

I
mousePressed } mouseDown

) il

mouseDragged

loop) }
|
|

mouseDrag

-1

\ mouseUp

mouseReleased

eV MiniDraw vrs MVC

AARHUS UNIVERSITET
* MiniDraw uses a ‘middle man’: The Editor

T

State: State

: Controller
«interface» - «interface»
rawingView DrawingEditor = current Tool

— The view requests access to the editor’s current tool
» Aka: delegating the request to state.request()

o e
* Handles mouse down events. The event is delegated to the
* currently active tool.
&
public woid mousePressed (MouseEwvent e) |
requestFocus () »
Eoint p = constrainPoint{new Point{e.getX{), e.get¥())):

flLastllick = new Foint{e.getX({), e.get¥{));
editor.tool {) .mouseDowni{e, p.X, pP.¥)r

CS@AU Henrik Baerbak Christensen

34

/v

AARHUS UNIVERSITET
* MiniDraw has some simple tools defined

«interface»
DrawingEditor

«interface»
DrawingView

user event
receiver

Tools

(——
|
|
|
|
|
|
..
current V/

- —— NullTool

SelectionTool

«interface»
Figure

«interface»
Tool

-
- 1

CS@AU

Henrik

DragTracker

————- SelectAreaTracker

35

/v Code view

AARHUS UNIVERSITET
It is very simple to set a new tool: \OOO

This is the code &—l—_l—r'::}{;@:j
equivalent of this Ul AR S 45

ry

 editor.setTool(t); =—>
tool box

 where t is the tool you want to become active.

 Framework: You can define your own tool types!
— A framework hotspot

CS@AU Henrik Baerbak Christensen 36

/v

AARHUS UNIVERSITET

Drawing: The Model role

MiniDraw 3.x rewrote the
code base to be purely
compositional.

/v Drawing

AARHUS UNIVERSITET
« Drawing — is responsible for quite a lot...

Drawing

e Be a collection of figures.

e Allow figures to be added and removed.

e Maintain a temporary, possibly empty, subset of all figures, called a
selection.

e Broadcast DrawingChangeEvents to all registered DrawingChangeLis-
teners when any modification of the drawing happens.

 How to model that in the compositional paradigm?

— By composition, of course! ... and we partially covered that
in Week 6: Compositional Design

CS@AU Henrik Baerbak Christensen 38

/v The Interface in MiniDraw

AARHUS UNIVERSITET

 So - itis defined in terms of fine-grained roles
— Role interfaces

public interface Drawing extends] FigureCollection, SelectionHandler,
FigureChangelListener] DrawingChangelListenerHandler {

Drawing

e Be a collection of figures.
Allow figures to be added and removed.

amn a temporary, possibly empty, subset of a

selection.

CS@AU Henrik Baerbak Christensen 39

/v And the Interface is nearly Empty

AARHUS UNIVERSITET
* One little extra responsibility is all there is...

public interface Drawing extends FigureCollection, SelectionHandler,

void lock();

void unlock();

]-

CS@AU Henrik Baerbak Christensen 40

/v

AARHUS UNIVERSITET
« Static view

MiniDraw: Drawing

«interface»
DrawingChangelListenerHandler

«interface»

FigureChangeListener

«interface»

SelectionHandler

DrawingChangeEvent

receiver

«interface»

CS@AU

Drawing

«interface»
FigureCollection

FigureChangeEvent

producer

Henrik Baerbak Christensen

«interface»
Figure

41

/v MiniDraw: Drawing

AARHUS UNIVERSITET

« But how does the view get repainted?

— Double observer chain

 Figure notifies drawing, which again notifies drawing view.

Figure drawing:
FigureChangelistener

moveBy(dx,dy)

® - :
invalidate
-4

create
22| @:FigureChangeEvent

figurelnvalidated(e) create

o

:DrawingChangelListener

d:DrawingChangeEvent

drawinglnvalidated(e)

CS@AU Henrik Baerbak Christensen

L

42

/v

AARHUS UNIVERSITET

« Observer pattern has two roles
— Subject. Container of data

— Observer. Object to notify upon data changes

« \WWho are who here???

Exercise:

DrawingView

Drawing

Figure

CS@AU

Henrik Baerbak Christensen

43

/v So the last role

AARHUS UNIVERSITET
« The last role that the Drawing serves...

public interface Drawling extends FligureCollection, SelectionHandler,

FigureChangelListener,) DrawingChangelListenerHandler {

e . Isto listen to any Change ~ «nterface «interface
, , FigureChangeListener SelectionHandler
events from the figures it

contains in order to be able =

to fire the drawing event...

«interface»
r Drawing

CS@AU Henrik Baerbak Christensen 44

/v Flexibility

AARHUS UNIVERSITET
« As any object, including a Figure itself, can listen to
FigureChangs...
— We can create semantic bindings
 MiniDraw can be used for to ..

create a UML diagram editor...

/v

AARHUS UNIVERSITET

DrawingView: The View role

/v

AARHUS UNIVERSITET

 The View is rather simple
— JPanel to couple MiniDraw to concrete Swing GUI

Implementation

View

— Listen to mouse events to forward them to tool/controller.

«interface»
Drawing

1

JPanel

«interface»
DrawingView

)

-

Il

StandardDrawingView

«interface»

DrawingChangeListener

«interface»
MouseListener

«interface»
MouseMotionListener

v The Compositional Advantage

AARHUS UNIVERSITET
* Note that this design combines two frameworks
— MiniDraw and Swing

— If DrawingView was not an interface then ;%

«interface» «interface»
- JPanel .
Drawing MouselListener
1 A\ </
-
-
~
rs
‘] «interface»

i 3\/ MouseMotionListener

«interface |- StandardDrawingView
DrawingView -
\

«interface»

Porting to JavaFX is on

DrawingChangeListener

the ToDo list!

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

DrawingEditor: The Coordinator

/v

AARHUS UNIVERSITET

Static View

DrawingEditor

e Main class of a minidraw application, that is the editor must instantiate
all parts of the application.

Opens a window to make a visible application.

Acts as central access point for the various parts of MiniDraw.

Allows changing the active tool.

Allows displaying a message in the status bar.

«interface» current
i i «interface»
ImageManager 1 DrawingEditor L~ terfa
setTool
Il'l,-f._~
A
M
«interface») h— o) _)
= —
Factory MiniDrawApplication ——/ = JFrame

CS@AU Henrik Baerbak Christensen 50

/v

AARHUS UNIVERSITET

Implementation

/v Default Implementations

AARHUS UNIVERSITET

* Most MiniDraw roles have default implementations:
— Interface X has default implementation StandardX
— Drawingview -> StandardDrawingVview

 There are also some partial implementations:
— Interface X has partial implementation AbstractX
— Tool -> AbstractTool
— Figure -> AbstractFigure

/v Compositional Design

AARHUS UNIVERSITET
« Complex behaviour as a result of combining simple
behaviour...
« Example:

— CompositionalDrawing implements Drawing
public interface Drawling extends§ FigureCollection,j SelectionHandler,
FigureChangelListenerfl DrawingChangelListenerHandler {

CS@AU Henrik Baerbak Christensen 53

eV How do we do that?

AARHUS UNIVERSITET

* Proposal 1:
— Implement ahead...

* Proposal 2:

— encapsulate major responsibilities in separate objects and
Compose beha Vior public class CompositionalDrawing implements Drawing {

figures currently selected =/

protected SelectionHandler selectionHandler;

... and we partially covered that

I'n Week 6: Compositional Design ssi:‘::rci:i‘l_c:j.,'Je__sreedce to hondle all observer pattern

protected StandardDrawingChangelistenerHandler listenerHandler;
protected FigureCollection figureCollection;

protected FigureChangelistener figureChangelistener;

public CompositionalDrawing() {

selectionHandler = new StandardSelectionHandler();

listenerHandler = new StandardDrawingChangelistenerHandler();

figureChangelListener = new ForwardingFigureChangeHandler(source: this, listenerHandler);
= figureCollection = new StandardFigure[:o'L‘Lectior‘(figureChangeListener);

¥

CS@AU Henrik Baerbak Christensen 54

Y o Code view: delegations!

AARHUS UNIVERSITET
« Examples:

public vold addDrawingChangelistener(DrawingChangelistener listener) {

listenerHandler.addDrawingChangelistener(listener);

public void addToSelection(Figure figure) {

selectionHandler.addToSelection(figure);

CS@AU Henrik Baerbak Christensen 55

eV What do | achieve?

AARHUS UNIVERSITET

* Implementing a custom Drawing

— In which the figure collection works differently...
* As in our HotStoneDrawing

— but | can reuse the collection, the selection and drawing-change
handler behavior directly!

public class HotStoneDrawingSolution implements Drawing, GameObserver {

alyc

private final StandardDrawingChangelistenerHandler listenerHandler;

private final FigureChangelistener figureChangelistener;

dlyi=a

private final FigureCollection figureCollection;

public Figure findFigure(int arg®, int argl) { return figureCollection.findFigure(arg®, argl); }
public Figure zOrder(Figure figure, ZOrder order) { return figureCollection.zOrder(figure, order); }

CS@AU public Iterator<Figure> iterator(} { return figureCollection.iterator(); } 56

/v

AARHUS UNIVERSITET

MiniDraw Variability Points

/v Variability Points

AARHUS UNIVERSITET

 Images

— By putting GIF images in the right folder and use them through
ImageFigures

* Tools

— Implement Tool and invoke editor.setTool(t)
» Figures

— You may make any new type you wish
* Drawing

— Own collection of figures (e.g. observe a game instance)
* Observer Figure changes

— Make semantic constraints
 Views

— Special purpose rendering

/v Summary

AARHUS UNIVERSITET
e MiniDraw is

— A framework: A skeleton application that can be tailored for a
specific purpose

— A demonstration:
« of MVC, Observer, State, Abstract Factory, Null Object, Strategy, ...

« of compositional design: Make complex behaviour by combining
simpler behaviours

— A basis: for the mandatory project GUI.

